

> Innovative chemistry applied to energy issues

> A joint research laboratory with a strong regional base

Member of the MUSE chemistry cluster gathering the Occitanie-Est chemistry community, the "Marcoule Institute for Separation Chemistry" is a joint research unit involving the CEA, the CNRS, the University of Montpellier and the National Graduate School in Chemistry of Montpellier.

> Missions to meet energy challenges

Develop a fundamental research in chemistry and physico-chemistry needed for the development of low-carbon energies, in order to save resources and to recycle recoverable materials.

Train and support through research (ED SCB Doctoral School) to provide students with a high level scientific and technological environment.

Innovate through valorisation and technology transfer activities.

A few key figures _____

2007

2009

4 600 m²

- 900 m² of laboratories
- **350 m²** of classrooms
- A 250-seat amphitheatre
- for researchers

A hundred collaborators

ICSM employees PhDs Post Docs

Trainees and apprentices

80 industrial and academic

collaborations/vear

A teaching centre

6.5 millions euros

international collaborations

UNITED STATES : LOS ALAMOS, BOSTON, PULLMAN, STANFORD, BERKELEY, DAVIS, SOUTH BEND, CHICAGO, EVANSTON | AUSTRALIA : CANBERRA, MELBOURNE, SYDNEY | EUROPE : KARLSRUHE, REGENSBURG, JÜLICH, BERLIN, POTSDAM, AACHEN, BARCELONA, MADRID, LJUBLJANA, COPENHAGEN, AMSTERDAM, MESSINA, DELFT, LONDON, CAMBRIDGE, BRISTOL | RUSSIA : MOSCOW | CHINA : GUANGZHOU | SINGAPORE | LEBANON : BEYROUTH INDIA : BANGALORE, PUNE | JAPAN : TOKYO, KYOTO | TUNISIA : MONASTIR | ALGERIA : ALGIERS, ORAN, TIZI OUZOU | SOUTH AFRICA : JOHANNESBURG | CYPRUS : NICOSIA | ARGENTINA : BUENOS AIRES

and industrial collaborations

VEOLIA | ORANO | EDF | TORSKAL | TND | EXTRACTHIVE | NEWTEC SCIENTIFIC | OCP | TATA | SKB ARCELOR MITTAL | MORPHOSIS | SOVAMEP | BRGM | SAINT-GOBAIN | CISBIO | CTI

> Research themes

INNOVATE TO SEPARATE, SORT AND RECYCLE

INNOVATION IN EXTRACTION AND RECYCLING

From the knowledge of molecular, supramolecular and colloïdal mechanisms, the design and the purposive synthesis of chemical systems are devoted to the nuclear fuel cycle and extended to the recycling of strategic metal by taking into account the principles of eco-friendly processes.

METHODOLOGIES AND THEORIES IN SEPARATION CHEMISTRY

by the use of tools and methodologies already mastered (light reflection, X-ray and neutron scattering, neutrons) or innovative (nonlinear optics, electro-acoustic, advanced alectron microscopy), as well as based on statistical physical chemistry.

OPTIMIZATION OF MATERIALS LIFE-CYCLE FOR ENERGY

by studying the cycle of chemical and/or physico-chemical processes related to the life of materials and associated fluids. It invi-olves understanding and establishing relationships between the structure (nano-organization, microstructure, electronics, composition...) and the reactivity (dissolution, physical stress, irradiation...) of solid compoundsand related.

> Multi-discipline high level scientific skills

Methodologies for synthesis

- Materials: oxides, carbides, phosphates...
- Materials with controlled porosity
- Organometallic chemistry, metallo-assembly
- Molecular extractants and self-assemblies
- Sintering

Physics and physical chemistry

- Molecular and ionic aggregation
- Liquid/liquid and solid/liquid interfaces
- Dissolution
- Irradiation

Separation chemistry techniques

- Liquid/liquid & solid/liquid
- Precipitation
- Membrane filtration
- Flotation

Methodology development

- Mesoscopic modeling
- Electronic microscopy
- Non-linear optics
- Neutron and X-ray scattering/diffraction